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Abstract 

This paper provides a comparison of remote sensing classification techniques as an 

extension of the environmental applications of remote sensing using Landsat data. It explores 

the history of remotes sensing, the principles of electromagnetic energy, and the general steps 

involved in remote sensing. Further, it describes the remote sensing features of Landsat -4, and 

5. Finally, it applies classification techniques using Idrisi software. 
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Introduction 

This project began as an investigation into the use of Landsat remote sensing imagery 

for the monitoring of Fountain Creek Watershed in Colorado Springs, Colorado. The imagery 

was available, but not quite appropriate for this application. The focus then turned to 

Landsat's use in general environmental studies with an emphasis on comparing different types 

of classification available for use here at UCCS. 

Simply gathering images through aerial photography or even space monitoring does 

not constitute remote sensing. These images are useless without the proper handling. A 

complete remote sensing application consists of three stages: 1. emission or reflection of 

energy from an object, 2. image capture, and 3. interpretation and analysis of image. 

The first stage consists of the propagation of energy through the atmosphere, energy 

interactions with earth surface features, and retransmission of the energy through the 

atmosphere. Determining an active or passive remote sensing system depends on the radiation 

source. If the system relies on solar radiation, it is considered passive. If the system generates 

its own radiation such as radar or sonar, it is considered an active system. This paper is 

concerned with passive systems only. 

The second stage can be accomplished through a variety of avenues. Aerial 

photography remains a popular means of obtaining high resolution images, but more and more 

satellite imagery systems are coming into play in both the commercial and government arenas. 

Two of the most prominent systems today are the European based SPOT satellite system, and 

NASA's Landsat program. Due to the availability of Landsat images to UCCS, only this 

image capturing system will be explored in this paper. 



Interpretation and analysis of the image then finish the remote sensing process. This 

step integrates the image, error correction, and ground truth data. Software and data 

manipulation correct for any distortion in the image due to the atmosphere, motion of the 

satellite, flaws in the sensor, etc. They also serve to enhance certain features of the image for 

better interpretation. However, no interpretation can be correct without comparing it to 

ground truth, or actual physical data gathered at the site or sites like it. Combining the image, 

error correction, and ground truth, objects in the image can be classified. Through this 

process, every portion of the image receives a distinction as designated by the end user. This 

paper focuses on several forms of error correction, available types of ground truth, and a 

comparison of different classification techniques using Idrisi software. 

1.0 Previous Environmental Studies 

1.1 Hydrology Applications 

Remote sensing can lend tremendous support to the monitoring of watersheds. It is 

particularly useful in gathering information about remote territories, such as water contained in 

snow packed or ice areas. Remote sensing also lends a hand in reducing the cost of repetitive 

and seasonal monitoring of lakes. For instance, monitoring the levels of the hundreds of lakes 

contained in even a small section of the upper mid-west can be time consuming and costly 

using conventional methods. However, the use of remote sensing as an assessment tool 

reduces both the time and expenses involved in this monitoring [1]. Due to scope of this 

paper, only water availability and flood monitoring will be discussed. 



1.1.1 Water Availability 

Water availability assessment through the use of Landsat imagery has had moderate 

success. A sharp contrast defines water masses from land in the infared region of the 

spectrum. Studies cited by Striffler report that Landsat imagery can be used to identify ninety- 

eight percent of all surface water in most areas. However, the bodies of water detected must 

be larger than at least one pixel on a Landsat image (30 m x 30 m). Ideally, the body would 

span several pixels for an accurate assessment of its cover. In fact, further studies cited by 

Striffler indicated that Landsat imagery was unsuitable for identifying bodies of water less 

than 80 meters wide. For this application, aerial photography, or systems with greater 

resolution are preferred. 

1.1.2 Flood Monitoring 

Landsat images have been used for the study of flood waters in many cases including 

the Mississippi River and the Indus River in Pakistan. In both these cases, the rivers studied 

can be easily identified on the Landsat imagery because of their immense proportions. An 

effective tool in the Indus River case was contrast stretching, which increased the difference 

between wet and dry areas, as well as delineating areas of leakage in dams and canals [1]. 

However, some of the data in flood estimation may be deceiving. Highly turbid waters, such 

as those that occur during flooding, can be easily mistaken for bare soil. The use of additional 

information on surrounding ground cover or vegetation in conjunction with the Landsat 

images may provide a better basis for flood level monitoring and estimation. 



1.2 Surface Characteristics 

Remote sensing provides a basis for extensive research in the identification and 

magnitude assessment of surface characteristics. Landsat images can be used to distinguish 

not only the type of vegetation covering the earth, but also the vegetation's health, what type 

of soil it's growing in, and of course, how much land each type of ground cover encompasses. 

1.2.1 Vegetation 

By comparing spectral patterns in Landsat imagery, image processors can easily detect 

live vegetation. Chlorophyll causes the plants to absorb strongly in the blue and red 

wavelengths. The biomass reflects strongly in the near infa-red region due to its cellular 

structure [1]. The feasibility of identifying specific crops in various fields of over 25 acres 

was demonstrated in a NASA study sited by Striffler. This case differentiated corn, alfalfa, 

and soybeans in South Dakota; wheat in Kansas; and various field and vegetable crops in 

California with an accuracy of 90 % or better. Forests and other vegetative land cover 

including grassland, brushland, deciduous forest (aspen), coniferous forest, and alpine tundra 

were identified with an accuracy ranging from 88 - 93 % in studies conducted in western 

Colorado. This study indicated that highly differing covers, such as grassland and forest, 

could be distinguished with confidence. Less certainty could be expected in the identification 

of similar features such as grassland and brushland [1]. 

1.2.2 Geological Applications 

Remote sensing can aid in the identification of non-vegetative ground cover including 

minerals and soil types. Landsat images provide a large scale picture of the region of study. 



By comparing spectral emittance in certain bands, numerous studies have used Landsat 

imagery to perform geological discrimination between even similar appearing rock 

formations. Accurate geological maps have been prepared solely from the imagery data in 

areas of sparse vegetation cover [2]. 

In addition to differentiating the geology of an area, identifying specific soil and soil 

moisture content can also be monitored using remote sensing. Studies demonstrated the 

effectiveness of comparing the relationship between soil spectral reflectance and soil moisture 

content for assessing the moisture content of soils [1]. Other effective techniques capitalize on 

the change in thermal properties of soils in the presence of moisture. However, the moisture 

content of soils with vegetative canopies are not completely reliable due to the reflectance and 

emittance of the canopy [1]. 

1.2.3 Impervious Land Cover 

Due to the low level of resolution obtained through Landsat images, an accurate 

assessment of individual homes, buildings, and roads is impossible. By delineating urban 

boundaries and performing different estimations on areas contained within the urban boundary 

and without, studies accurately estimated the impervious land cover of 140 watersheds in the 

Washington D. C. area. However, these techniques were found to be less reliable in 

conjunction with small towns [1]. The mesh of lawns, homes, driveways, and streets results in 

a region which may be discernable as single family homes. The further the houses are from 

each other, the more easily these areas can be confused with surrounding ground cover. In 

areas where a class is accurately defined as single family homes, urban, etc... an estimate of 



impervious land cover can be generated using a generic ratio of the impervious land cover to 

open land cover in such areas. 

2.0 Remote Sensing 

Remote sensing encompasses any type of study that gathers information about a 

source without coming into physical contact with it. Remote sensing studies range from 

simple sight or hearing observations, to astronomy, to the use of satellites for gathering 

information about weather patterns or the surface of the Earth. This paper concentrates on 

remote sensing studies involving satellite imagery of the Earth's surface. 

2.1 A Brief History of Remote Sensing 

Arial remote sensing began with the first known aerial photograph, taken by Parisian 

photographer, Gaspard Felix Tourachon (Nadar). Nadar captured Bievre, France on film from 

a balloon at the height of 80 meters. Kites began obtaining meteorological data via 

photographs around 1882. In 1909, the first aerial motion pictures were taken from one of the 

Wright brothers' planes. From there, remote sensing moved beyond the earth's atmosphere. 

Remote sensing from space evolved from cameras launched on rockets at the 

beginning of the century, to pictures taken from manned mission, to satellite systems 

dedicated to capturing images of the Earth and its atmosphere. One of the largest providers of 

imagery data today is the Landsat satellite system. This program began as the Earth 

Resources Technology Satellite, launched on July 23,1972, and provides repetitive 

monitoring of earth resources. Through space programs such as Landsat, the remote sensing 



field has grown into a science capable of serving military, meteorological, agricultural, 

geological, environmental, and civic planning programs. 

3.0 Energy Propagation Principles 

Electromagnetic waves contain a sinusoidal electric wave and a magnetic wave which 

oscillate in phase, at right angles, both perpendicular to the direction of wave propagation. 

Each wave travels at the speed of light (c) and is characterized by a specific wavelength (X) 

and frequency (v). The distance from one peak to the next is the wavelength, and the number 

of peaks which pass a fixed point per unit time is the frequency. Frequency, wavelength, and 

speed are related by the equation 

c = vX (m/s) (3.1) 

where c is approximated as 3 x 108 m/sec. Wavelengths are generally categorized for remote 

sensing applications in terms of um, or 1 x 10" m. 

Considering only passive detection systems, the portion of the electromagnetic (EM) 

spectrum available for image capture ranges from 0.4 to 15 urn. This constitutes a very 

narrow window of the entire EM spectrum. This window includes the visible spectrum (0.4- 

0.7 (am), as well as infa-red (0.7-15 urn). Figure 3.1 illustrates the electromagnetic spectrum, 

highlighting the portion usable in remote sensing. 
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Figure 3.1: Electromagnetic Spectrum [3] 

All matter emits electromagnetic radiation. The total exitance over all wavelengths 

can be characterized by the Stefan-Boltzmann law, 

M=sT4 (3.2) 

Where 
-2\ M = total radiant exitance from the surface of a material (Wm") 

-2 ir4. s= Stefan-Boltzmann constant, 5.6697x 10" (Wm" K ) 
T = absolute temperature of the emitting material (K) 

However, this equation only applies to blackbodies. A blackbody behaves as a perfect 

radiator. It totally absorbs and emits all energy incident upon it. The wavelength at which 

peak blackbody exitance occurs, the dominant wavelength, can be calculated from its 

temperature through Wein 's displacement law, 

^-rnax — A/1 (3.3) 

Where 
A^ax- wavelength of maximum spectral radiant exitance (urn) 
A = Wein displacement constant, 2898 (um K) 
T = temperature (K) 

The sun acts as a blackbody radiating at about 6000 K. This corresponds to a 

dominant wavelength of approximately 0.5 urn. This correlates with the center of the visible 

spectrum. However, objects with temperatures near the earth's ambient temperature, about 



300 K, produce a dominant wavelength of approximately 9.7 urn. This corresponds with the 

general distinction of infrared, or thermal, energy [4]. These relationships are illustrated more 

clearly in figure 3.2. 
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Figure 3.2: Blackbody Curves [3] 

2 5       W     2«     PJ     '!€»# 

Why do we see images in a spectral zone that they are not emitting strongly from? 

This is because the light we see is reflected off the object and originates from the sun. 

Therefore, as a general rule, below wavelengths of approximately 3 urn, reflected energy 

dominates. Above 3 urn, the energy is assumed to be emitted [4]. 

The atmosphere's composition also limits the amount of reflected or radiated energy 

that can reach a sensor. Water vapor, carbon dioxide, and ozone act as the primary absorbers 



[3]. This absorption creates windows in the EM spectrum for remote sensing energy 

measurements. Three types of scattering also limit EM transmission through the atmosphere. 

Rayleigh scattering occurs when particles much smaller than the wavelength bend it, affecting 

primarily the shorter wavelengths, resulting in blue skies. When particles nearly equal to the 

wavelength in diameter, such as water vapor and dust, interact, Mie scattering occurs. Non- 

selective scattering affects all remote sensing wavelengths because particles are much larger 

than the wavelengths, such as water droplets. Fog and clouds appear white as a result. 

Figure 3.3 combines the effects of atmospheric transmission, solar irradiance, and 

ambient earth temperature exitance. Note that the visible spectrum occurs in wavelengths of 

high atmospheric transmission. However, not all of the infrared portion of the spectrum is 

included. Therefore, bands of measurement through the infrared spectrum coincide with the 

windows available. The thermal band corresponds with the window around 10 um which also 

corresponds to the dominant wavelength of earth temperature and exitance. 
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Figure 3.3: Exoatmospheric Solar Irradiance, Atmospheric Transmission, and Exitance 

versus Wavelength [4] 
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3.1 Spectral Response Curves 

Every object reflects and emits energy in a specific way. This is how the human eye 

can distinguish between objects and colors. In each spectral band, a certain amount of energy 

is reflected or emitted from each object. When graphed over the entire spectrum, these energy 

responses result in a spectral response curve, as illustrated in figure 3.4. 
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Figure 3.4: Spectral Response curves for coniferous and deciduous trees [3] 

Figure 3.4 demonstrates the use of spectral response curves for classification. In some 

of the bands, particularly those between 0.4 and 0.7 urn, both coniferous and deciduous trees 

give the same response patterns. When viewing those bands, no difference would be noted 
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between the types of trees. However, when viewing bands containing wavelengths between 

0.7 and 0.9 um, a drastic difference is noted between the responses of the two types of trees. 

The curves can help classification in two ways. First, the curves can be viewed before 

attempting to differentiate between objects. Then, the classifier knows what bands to look at 

to distinguish between the objects. For this example, it would be the bands containing 0.7-0.9 

jam. Otherwise, if a classifier finds an odd response when scrolling through the available 

bands, he or she can match spectral response curves to known response curves for a distinct 

classification of objects. In this case, the classifier may not be aware that more than one type 

of tree is contained in the sample area, but when differing responses are noted, the classifier 

finds that indeed, the response curves correlate to both deciduous and coniferous trees. 

For vegetation studies, spectral response curves serve only as a guide to what bands 

are most useful in classification, and the relative response patterns exhibited by various 

species. Due to seasonal changes and other variables in the growth cycle such as water 

availability, pests, etc., definitive spectral response patterns are not generally consulted for 

vegetation ground cover. However, relative response patterns generated for the particular 

study site usually provide ample information for separation of vegetation classes. 

4.0       Image Capture 

Remote sensing offers two types of image capture, analog and digital. Analog 

provides a continuous spectrum of values for light intensities contained in an image. Digital 

capture employs a stepwise recording of radiation through the use of charged couple devices 

(CCD's). Analog can therefore provide a more accurate display of the image; however, it 

cannot be manipulated to enhance features. Digital capture may lose some of the subtleties in 

12 



intensity variations due to its stepwise nature, but it is capable of providing a broader range of 

brightness sensitivity than analog capture, as illustrated in figure 4.1. In addition, digital 

capture enables the user to manipulate and interpret images with flexibility that far exceeds 

analog capture's abilities. Most satellite systems, including Landsat, employ digital capture of 

images. 
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Figure 4.1: Sensitivity comparison of image capture options [5] 

4.1 The Landsat System 

Landsat-4 and -5 satellites weight approximately 2000 kg. They include solar panels 

mounted on one side, a multi-spectral scanner, thematic mapper, X-band and S-band antennas, 

and a high gain antenna mounted on a boom. The X-band and S-band antennas provide direct 

data transfer when necessary. The high gain antenna enables the satellite to relay data to 

ground sites through the geosynchronous communication satellite network, Tracking and Data 

Relay Satellite System (TDRSS) [3]. Figure 4.2 illustrates the Landsat-4 and -5 

configurations. 
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Figure 4.2: Landsat -4, -5 configurations [3] 

4.1.1 Orbit and Constellation 

Landsat's current satellites follow repetitive, circular, sun-synchronous, near-polar 

orbits at a height of 705 km above the earth. This lower orbit makes the satellites potentially 

achievable by the space shuttle, as well as improving their resolution over the first three 

Landsat satellites. Landsat-1-3 orbited at heights of 900 km [3]. 

Landsat orbits at an inclination of 98.2 degrees. It crosses the equator at 9:45 A.M. 

local sun time every day (sun synchronous). Each satellite takes approximately 99 minutes to 

complete an orbit. This corresponds with a 16 day ground track repeat. Landsat 4 and 5 are 

eight days out of phase, so that an 8 day repeat cycle is established when both are operational. 

The distance between consecutive day's ground tracks is approximately 2752 km at the 

equator. Adjacent ground tracks are taken every 7th day [3]. The ground track scenario is 

depicted in figure 4.3. 
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Figure 4.3: Landsat-4,-5 groundtracks [3] 

4.1.2 Sensors 

Landsat-4 and -5 include both the multi spectral scanner (MSS) and thematic mapper 

(TM). Both of these systems employ across-track scanning [5]. Energy from the field of view 

is split into the spectral components desired for collection. The visible light is separated via a 

prism, whereas a dichroic grating separates the thermal component. The resulting narrow 

bands of energy are then projected onto an array of detectors [6]. The voltage at each detector 

is sampled periodically (every 9.95 \xs for the MSS), and converted to a gray scale value. This 

value corresponds to the darkness of one pixel in the final image and is stored using either 6 or 

7 bits (64/128 values) for the MSS, or 8 bits (256 values) for the TM. Table 4 delineates the 

spectral bands detected by each system. 
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Sensor Band Waveband (u.m) Pixel (m) Levels 

MSS 1 0.5-0.6 79 128 

2 0.6-0.7 79 128 

3 0.7-0.8 79 128 

4 0.8-1.1 79 64/128 

TM 1 0.45-0.52 30 256 

2 0.52-6.0 30 256 

3 0.63-0.69 30 256 

4 0.76-0.90 30 256 

5 1.55-1.75 30 256 

6 10.4-12.5 30 256 

7 2.08-2.35 30 256 

Table 4: Characteristics of the MSS and TM [5] 

4.1.2.1 Multispectral Scanner 

The Landsat program has contained a multispectral scanner in every spacecraft. It 

provides data over a range of spectral windows to help generate spectral signatures for 

classification and comparison of features contained in the images. Landsat MSS data 

constitutes the most comprehensive remote sensing database in the world. The MSS captures 

information in four bands including, 1. 0.5-0.6 urn, 2. 0.6-0.7 urn, 3. 0.7-0.8 urn, and 4. 0.8- 

1.1 urn. The MSS scans the 185 swath from west-to-east by oscillating a small mirror over a 

14.92 degree total field of view. The mirror oscillates once every 33 msec [3]. The MSS 

acquires 6 lines in every scan. Therefore, ground coverage occurs at 1/6 of the single line scan 

rate. Since six lines are scanned, six sensors must be present for image capture in each band 

16 



because every line requires a sensor. The MSS captures 4 bands with 6 sensors in each band, 

so it contains 24 sensors. Figure 4.4 illustrates the Landsat multispectral scanner system. 
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Figure 4.4: Multispectral Scanner System [7] 

The MSS samples each sensor's voltages as it sweeps across the swath and converts 

the voltage into a value between 0 and 127 for digital processing and display. This sampling 

process generates approximately 3240 pixels per line. Dividing the total swath length of 185 

km by the sampling rate in the time for each line to be scanned results in an actual frame 

length of 56 m. However, the brightness value for each pixel is derived from an 82 meter 

square, equal to the swath width [3]. The resulting matrix is composed of 56 x 82 m 

rectangles. The MSS instantaneous field of view is equal to the sample area, 82 x 82 m , or 

6724 m2 [7]. 
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4.1.2.2 Thematic Mapper 

The thematic mapper was added to Landsat -4 and -5 as an improvement on the MSS 

image acquisition. The TM obtains data for 7 spectral bands, rather than four. The extra 

bands improve spectral differentiability of major earth features and cover a broader range of 

the EM spectrum than the MSS. These bands include, 1. 0.45-0.52 urn, 2. 0.52-0.6 urn, 3. 

0.63-0.69 urn, 4. 0.76-0.90 urn, 5.1.55-1.75 jam, 6.10.4-12.5 urn, and 7.2.08-2.35 (am. They 

cover the visible spectrum, plus another blue band, near infrared, mid-infrared, and thermal 

portions of the spectrum [5]. 

The TM covers the same swath width as the MSS, 185 km. However, it acquires data 

when scanning in both the west-to-east direction as well as the east-to-west direction. This 

reduces the scan rate and increases the dwell time for each detector. It only completes 7 

cycles in one second over the total field of view, 15.4 degrees. This reduces the acceleration 

of the mirror to improve geometric integrity and signal to noise performance for the system 

[3]. TM data are collected using a 30 m ground resolution cell for non-thermal, and 120 m for 

thermal bands. This reduces the ground cell area by 7 from that obtained with the MSS. 

The TM employs 16 detectors for each non-thermal band and 4 for the thermal band. 

This corresponds to 100 detectors compared with the MSS's 24. Both sets of detectors are 

calibrated using three tungsten filament lamps, a blackbody, and a pivot mounted shutter. The 

shutter directs the lamps' light to the non-thermal band (1-4) detectors, while a mirror on the 

shutter directs the blackbody energy to the thermal band (5-7) detectors. Detectors for bands 

1-4 are located in the primary focal plane, and detectors for bands 5-7 are located on a cooled 

second focal plane. Every detector views a different area on the ground due to the spatial 



Separation of the detectors on the two focal planes [3]. Figure 4.5 illustrates the TM optical 

path and assembly. 
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Figure 4.5: Landsat Thematic Mapper Optical Path and Assembly [3] 

Spacecraft motion and spatial separation necessitate corrections based on time for 

band-to-band correlation. A scan angle monitor generates signals indicating the mirror's 

angular position as a function of time, called scan mirror correction data. This data is 

transmitted to the ground for geometric image correction and to the scan line corrector. The 

scan line corrector rotates the TM line-of-sight backwards along the satellite ground track to 

compensate for the forward motion of the spacecraft. This produces straight scan lines that do 

not overlap or underlap [3]. 

5.0 Image Interpretation and Analysis 

Because this paper focuses on Landsat imagery, only digital image processing will be 

discussed in this portion. However, an important step in interpretation and analysis of the 

image involves gathering sufficient ground truth. This data can come from a variety of 

sources and is correlated to the image to enable accurate classification. Other steps in the 
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classification process include image enhancement, an applied classification method, 

smoothing, and error assessment. This section explains each step and its applications using 

Idrisi software and Thematic Mapper data gathered for the Howe Hill area in Massachusetts. 

5.1 Rectification and Enhancement 

Due to the southerly motion of the satellite, and the easterly rotation of the earth, the 

actual image captured by Landsat satellites looks more like a parallelogram than a rectangle. 

Each successive line captured falls slightly to the west of the previous line. This result is a 

systematic and predicable error. It can be easily rectified through comparison of the image to 

USGS maps. 

Other systematic errors are imposed on the image by the detectors. Each detector has 

a specific range of sensitivity calibrated using onboard calibration lamps [3]. The detector 

senses a certain radiance as its 0 digital number (DN) value, and a different radiance as its 255 

DN value. The range in between corresponds to a linear relationship. These min and max 

values are posted in the header of each image, so absolute radiance values for any given image 

can be calculated from the equation: 

L = 
LMAX-LMIN 

DN + LMIN (5.1) 
255 

The relative radiances generated by Landsat are sufficient for the purposes of this paper, 

so absolute radiance values were not generated. 

Landsat images display energy as a digital number (DN) for every pixel in the 

scene in each band measured. Often, the range of values does not encompass the entire 

spectrum of available values (0-255). To enhance different features, a contrast stretch 
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may be applied. In this case, the values are spread to use the entire spectrum. The lowest 

value becomes 0, and the highest equals 255 regardless of the original DN. This stretch 

enhances variations in bright or dark areas which may not be apparent in the original 

spectrum. This type of stretching can be applied even if the DN values span the entire 

range. In this case, a certain percentage of DN values can be truncated from each end of 

the scale, and the linear stretch is then applied to the remaining DN range. This enhances 

differences in energetic response for easier identification of features. 

Figure 5.1: Howe Hill TM band 4 originally, and with a 5 % linear stretch applied. 

Figure 5.1 demonstrates the application of contrast stretching using a 5% truncation. 

Appendix A contains histograms of the DN values spread and occurrences for each image. 

Note that the DN values range from 0 to 190 in the original histogram. 5% of the DN values 

are truncated from each side of the histogram. The remaining DN values are then stretched to 

cover the entire spectrum, 0 to 255. The relative differentiation of this stretch provides clear 

distinctions between water and land. Water appears very dark in both images, but is in greater 
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contrast in the stretched image. Linear stretching obviously aides in visual analysis, but is also 

a useful tool in computer classification. 

5.2 Classification 

Digital classification methods fall into either of two categories, supervised and 

unsupervised classification. Both methods employ the use of multi-spectral data. These data 

are combined to form spectral response patterns that are then used to separate and classify 

each pixel into a specific group. Supervised classification specifies the number of groups the 

data is to be divided into, while unsupervised classification allows the data to fall into groups 

defined only by the spectral response patterns, not a priori knowledge of site content. 

5.3 Supervised Classification 

Supervised classification using Idrisi, can accommodate the use of up to seven spectral 

bands, the number of bands Landsat's Thematic Mapper captures. The basic sequence of 

operations for supervised classification follows: 

1. Define Training Sites 

2. Extract Signatures 

3. Classify the Image 

4. Post-classification Smoothing 

5. Accuracy Assessment 

5.3.1   Define Training Sites 

A single band, or composite of up to three bands can be used to define training sites in 

Idrisi. For this demonstration, the infrared image, TM band 4, was used. A land use map of 

Howe Hill (figure 5.2) delineated appropriate training sites for supervised classification. 
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Figure 5.2: Land use map of Howe Hill Region (Idrisi) 

Figure 5.2 is an example of ground truth. Ground truth may be gathered through 

samples for a specific study, through examining geological, agricultural, and hydrological 

studies of the site, or by employing Geographical Information Systems (GIS). GIS's contain 

layered information files on sites including information such as mineral content, ground cover, 

etc. This site was provided by Idrisi as a training exercise. In order to locate appropriate 

training sites in the field, areas of at least several pixels must be identified and located. These 

sites must be homogeneous and can be located using GPS receivers and/or a map. Obviously, 

the larger the area, the higher the potential for larger homogeneous areas for training sites 

which subsequently improve classification. In general, at least 10 times as many pixels must 

be characterized as there are bands in the image to classify. Therefore, at least 70 pixels must 

be sampled for a Landsat TM image [8]. 

5.3.2 Extract Signatures 

Idrisi now extracts signatures from the training sites in the image. The signatures 

correspond to the response in each band for the area contained in the training site. Idrisi 
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generates a characterization of the each class defined in the training set. In this step, I chose to 

use only 5 signatures even though 11 classes are defined by the land use map. The classes 

were derived from initial analysis, and the ability to define adequate training sites. The classes 

include water, coniferous trees, urban, agriculture, and deciduous trees. 

5.3.3 Classify the Image 

Now, Idrisi applies the characterization obtained through the training site to each pixel 

in the image. Idrisi offers two types of classification, soft and hard. Soft classification allows 

for the mixing of classes within each pixel. For example, a pixel may contain 20% conifers, 

and 80% deciduous trees. The soft classifier "expresses the degree to which a pixel belongs to 

each of the classes being considered" [8]. Hard classifiers yield a definite association with one 

of the defined classes. If 46% of a pixel belongs to coniferous and 54% deciduous, the pixel is 

classified as deciduous. I chose a hard classifier for this example since the ground truth was 

defined using whole pixels. 

Idrisi offers several options within the hard classifier category. The classifier 

compares the response zones of each class in every band to the unknown pixel. MINDIST 

classifies the unknown pixel by the minimum distance to the mean of each training class. 

PIPED generates a parallelepided region for each class. Whatever parallelepided the unknown 

pixel falls into classifies the pixel. However, in cases of parallelepiped overlap, the 

classification is arbitrary. The classifier MAXLIKE is based on Bayesian probability theory. 

MAXLIKE uses the mean and variance/co variance data of the signatures to generate elliptical 

zones of probability for each class. The unknown pixel falls within a zone for every class. 

The class with the highest probability zone for that pixel defines the pixels classification. I 
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chose MAXLIKE as the classifier for this data because it produces the best results although it 

is slightly more time consuming [8]. 

5.3.4 Post-Classification Smoothing 

Once classification is complete, the resulting response histograms for each band can 

be viewed. Ideally, these histograms result in a bell shaped curve centered on a DN of greatest 

frequency. Therefore, if outliers exist, these can be severed from the data set to provide a 

better curve and resulting better data sets as illustrated in figure 5.3. The left image histogram 

contains outliers which are severed in the right image histogram. 

I 
28.00    28.50    31.00     32.50    34.00     35.50    37.00    38.50    10 .00    41.50    43.00 32.00    33.00    34.00    35.00    36.00    37.00   38.00    39.00    40.00    41.00    42.00 

Figure 5.3: Conifers TM band 5 with outliers, and without 

If the data set exhibits multiple peaks, this indicates that several types of classes are 

merged into one. Either reclassification can result, or the histograms can be compared to the 

other existing classes for a match. If a match occurs, this indicates that the training site 

contained both its own type of cover, and the matching cover. This type of distortion is 

exhibited in figure 5.4. Notice how the deciduous peak is contained in the agriculture 
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histogram. In this case, the deciduous peak can be separated from the agriculture class, 

resulting in a new agriculture class exhibited in figure 5.5. 

84.00    «4.00    65.80    86.70    67.60    88.50    60.40    70.30    71.20    72.10    73.00 63.00    63.00    64.80    65.70    66.60    67.50    68.40    60.30    70.20    71.10    72.00 

Figure 5.4: Histograms of agriculture TM bandl versus Deciduous TM band 1 
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Figure 5.5: New agriculture histogram for TM band 1 

5.3.5 Accuracy Assessment 

I measured the accuracy of the MAXLIKE classification using ERRMAT in Idrisi. 

Essentially, ERRMAT produces what is called an error matrix. The error matrix compares the 
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relationship between known reference data, and the classification data generated by Idrisi on a 

category by category basis [3]. The known classification (columns) versus the classifier based 

pixels (rows) generates the matrix. The error matrix generates errors of omission (exclusion) 

as well as errors of commission (inclusion). The overall accuracy and the accuracy of each 

class can also be determined (see Appendix B). Normally, only select reference areas are used 

for this analysis. The accuracy assessment only indicates how well the classifier performs in 

those areas and cannot necessarily be applied as an accuracy assessment of the entire area [3]. 

However, since a land use map for the entire Howe Hill area exists, the error matrix generated 

by ERRMAT does apply to the entire image. 

5.4 Unsupervised Classification 

Idrisi software utilizes a composite image for unsupervised classification. The image 

can contain only three spectral bands. I chose LANDSAT bands 3,4, and 5, which 

correspond to the visible red band, near-infrared band, and middle infrared band, respectively, 

and provide the most information [8]. I then applied a 1 % saturated linear stretch as 

suggested in the Idrisi User's Guide. The sequence of operations for unsupervised 

classification follows: 

1. Cluster classification 

2. Post-classification smoothing 

3. Accuracy Assessment 

Post-classification smoothing and accuracy assessment follow the same format as supervised 

classification, so this section only further examines cluster classification. 
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The CLUSTER option was applied to indicate every class Idrisi could separate, which 

generated 14 classes. However, these classes were not well defined. Therefore, I examined 

the histogram of the composite DN values (figure 5.6). 

we ff £&A JL . M . Jll 
0.00     21.50     43.00     64.50     86.00    107.60   129.00   150.50   172.00   193.60   215.00 

Figure 5.6:  Histogram of composite DN values for Howe Hill, TM bands 3,4, 5 

Figure 5.6 clearly indicates the presence of 6 classes. I then ran CLUSTER with a maximum 

of six classes. These classes still indicated some ambiguity, so two of the classes were 

subsequently combined as urban. 

5.5 Combination Classification 

Combination classification merges unsupervised classification with supervised 

classification. First, I ran CLUSTER on the composite image to delineate the 5 classes, then I 

applied the training sites as in supervised classification, following the class definitions on the 

unsupervised image. From there, smoothing and accuracy assessment followed. The steps for 

combination classification follow: 

1. Cluster classification 

2. Define training sites 

3. Extract signatures 
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4. Classification 

5. Post-classification smoothing 

6. Accuracy Assessment 

6.0 Results and Discussion 

I generated classification scenes using supervised classification and two levels of 

smoothing, unsupervised classification, and combination classification using two levels of 

smoothing. The first level of smoothing consisted of simply cropping the outliers from the 

response DN histograms for each band in every class. The second level of smoothing 

involved cropping the histogram to form a more bell shaped curve, and separating merged 

classes, as described for the agriculture band above. I generated the results using the 

ERRMAT function in Idrisi. The error matrices can be found in Appendix B. 

Classification Technique Smoothing Level Overall Accuracy 

Supervised None 0.6457 

Supervised 1 0.6410 

Supervised 2 0.6428 

Unsupervised None 0.6315 

Combination None 0.5782 

Combination 1 0.5719 

Combination 2 0.5696 

Table 6.1: Overall accuracy of applied classification techniques 

Supervised classification surpassed the performance of combination classification by 

seven percent. Unsupervised classification performed comparably to supervised classification. 
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This indicates that the spectral responses of each class were fairly well defined. However, an 

accuracy of 64 % does not indicate a very good classifier. Generally, classifications of 80 % 

accuracy or better are preferred [3]. Surprisingly, overall accuracy was diminished by using 

post-classification smoothing techniques in both supervised and combination classification. 

Combination classification provided the worst estimate. The ground truth sites I chose 

for this portion of the study were areas that were completely enclosed in the land use map, but 

appeared salt and peppered on the unsupervised classification image, with the exception of 

water. The choice of ground truth sites may have led to poorer accuracy in combination 

classification. 

Simply comparing overall accuracy does not tell the whole story. Some classes 

achieved a high level of classification accuracy, where others performed dismally. This 

pattern occurred for every classification technique used. Table 6.2 displays the errors of 

commission and omission for unsupervised classification without smoothing. This provides 

an adequate model for all of the classification techniques. 

Class Description Commission Omission 

1 Water 0.1072 0.1439 

2 Conifers 0.3556 0.5276 

3 Urban 0.4602 0.3593 

4 Agriculture 0.7815 0.3308 

5 Deciduous 0.0920 0.3711 

Table 6.2: Errors of commission and omission for supervised c 
smoothing. 

assification without 
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Errors of commission correspond to the probability that a pixel defined as a certain 

class will not be that class in the field. For both the water and deciduous classes, pixels 

designated as either class have approximately a 90 % probability of actually being that land 

cover at the site. Agriculture, on the other hand, has only a 22 % probability of its 

classification agreeing with ground truth. This means that there are many extra pixels 

included in the agriculture class that do not actually belong there. 

Errors of omission correspond to the probability that pixels of a certain class in the 

field are not designated as that class during classification. Here, water still performed the best. 

Only 14 % of ground truth that was actually water was not included in the class. Conifers had 

the highest percent probability of not being classified correctly, with 53 %. The other three 

classes had a 33-37 % probability that their classifications would be falsely contained in 

another class. 

These errors indicate the performance ability of the training sites. The training site for 

water was excellent. None of the other training sites were very homogeneous, especially 

agriculture. These errors stem from the fact that broad areas were defined on the land use map 

as deciduous, conifers, urban, and agriculture, whereas most of those regions probably 

contained a mix of several categories. Actually visiting the field site could indicate more 

appropriate training sites. Another factor is the use of hard classifiers. In cases where a 

variety of classes are present in a pixel, only soft classifiers will indicate this. However, the 

"ground truth" land use map indicated hard classification of pixels. 

7.0 Conclusions 

A classifier is only as accurate as the training sites. Large areas (at least 4-5 pixels) 

must be defined and accurately placed on the image for supervised classification or 
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combination classification to be effective. Unsupervised classification can give a good 

indication of where these training sites may be located quickly, without visiting the field site 

before classification. Without the proper use of training sites and ground truth, both 

supervised and combination classification perform with accuracies equivalent to unsupervised 

classification accuracy. This illustrates the fact that a strictly digital classification without 

proper ground truth correlation cannot provide the accuracy necessary for land use 

classification. 
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Error Matrix Analysis of SUPER5 (columns : truth) against SUPER51 (rows : mapped) 

12 3 4 5      Total   ErrorC 

11 458 22 6 0 27 | 513 0.1072 
2| 3 154 24 4 54 | 239 0.3556 
3| 63 95 658 127 276 | 1219 0.4602 

4| 7 16 183 350 1046| 1602 0.7815 
5| 4 39 156 42 2378| 2619 0.0920 

Total |       535      326     1027      523     3781 |   6192 
ErrorO I 0.1439 0.5276 0.3593  0.3308  0.37111 0.3543 

ErrorO    = Errors of Omission  (expressed as proportions) 
ErrorC    = Errors of Commission (expressed as proportions) 



Error Matrix Analysis of SUPER5 (columns : truth) against SUPER52 (rows : mapped) 

12 3 4 5      Total   ErrorC 

11 457 22 7 0 28 | 514 0.1109 

2| 5 150 31 4 57 | 247 0.3927 

3| 68 104 711 299 473 | 1655 0.5704 

4| 0 4 103 170 742 | 1019 0.8332 

5| 5 46 175 50 2481| 2757 0.1001 

Total |        535       326      1027      523      3781 |    6192 
ErrorO'l 0.1458 0.5399 0.3077   0.6750 0.3438 I 0.3590 

ErrorO    = Errors of Omission  (expressed as proportions) 
ErrorC    = Errors of Commission (expressed as proportions) 



Error Matrix Analysis of SUPER5 (columns : truth) against SUPER53 (rows : mapped) 

12        3        4        5      Total       ErrorC 

11 460 20 5 0 28 | 513 0.1033 
2| 5 157 31 4 57| 254 0.3819 

3| 64 97 713 290 479 | 1643 0.5660 
4| 0 4 102 179 746 | 1031 0.8264 

5| 6 48 176 50 2471| 2751 0.1018 

Total |   535     326   1027   523   3781 |   6192 
ErrorO I 0.1402 0.5184 0.3057 0.6577 0.34651      0.3572 

ErrorO     = Errors of Omission  (expressed as proportions) 
ErrorC    = Errors of Commission (expressed as proportions) 



Error Matrix Analysis of COMBINED (columns : truth) against UNSUPER2 (rows : mapped) 

1 2 3 4 5 Total   ErrorC 

1 478 29 5 0 33 | 545 0.1229 

2| 46 278 198 26 493 | 1041 0.7329 

3| 11 2 406 209 140 | 768 0.4714 

4| 0 3 46 157 644 | 850 0.8153 

5| 0 14 252 131 2591 | 2988 0.1329 

Total |     535        326      907      523    3901 |   6192 
ErrorO I 0.1065   0.1472  0.5524  0.6998  0.3358 I 0.3685 

ErrorO    = Errors of Omission  (expressed as proportions) 
ErrorC    = Errors of Commission (expressed as proportions) 



Error Matrix Analysis of COMBINED (columns : truth) against COMBO (rows : mapped) 

1 2 3 4 5       Total   ErrorC 

11 421 4 1 0 15 | 441 0.0454 
2| 3 142 21 5 53 | 224 0.3661 
3| 13 3 504 143 160| 823 0.3876 
4| 90 125 257 341 1501| 2314 0.8526 
5| 8 52 124 34 2172| 2390 0.0912 

Total |       535      326      907      523     3901 |   6192 
ErrorO I 0.2131 0.5644  0.4443 0.3480 0.44321 0.4218 

ErrorO    = Errors of Omission  (expressed as proportions) 
ErrorC    = Errors of Commission (expressed as proportions) 



Error Matrix Analysis of COMBINED (columns : truth) against COMB02 (rows : mapped) 

12        3        4        5    Total   ErrorC 

11 382 2 0 0 12 | 396 0.0354 

2| 3 142 21 5 53| 224 0.3661 

3| 13 3 504 143 160 | 823 0.3876 

4| 129 127 258 341 1504| 2359 0.8554 

5| 8 52 124 34 2172| 2390 0.0912 

Total |     535      326      907      523     3901 |   6192 
ErrorO I 0.2860 0.5644 0.4443 0.3480 0.4432 I 0.4281 

ErrorO    = Errors of Omission  (expressed as proportions) 
ErrorC    = Errors of Commission (expressed as proportions) 



Error Matrix Analysis of COMBINED (columns : truth) against COMB03 (rows : mapped) 

1 2 3 4 5      Total   ErrorC 

11 382 2 0          0 12 | 396 0.0354 

2| '      3 142 21          5 53 | 224 0.3661 

3| 7 2 472      126 135 | 742 0.3639 

4| 135 128 288      357 1527| 2435 0.8534 

5| 8 52 126        35 2174| 2395 0.0923 

Total | 535 326 907     523 3901| 6192 
ErrorOI 0.2860 0.5644 0.4796 0.3174 0.4427 1 0.4304 

ErrorO    = Errors of Omission  (expressed as proportions) 
ErrorC    = Errors of Commission (expressed as proportions) 


